

DEPARTMENT OF ECOLOGY

Publication No. 79-e12 WA-25-4010

7272 Cleanwater Lane, Olympia, Washington 98504

206/753-2353

MEMORANDUM May 2, 1979

To:

Douglas Houck

From:

Eric Egbers

Subject: Longview STP Class II Inspection

Introduction:

A Class II inspection was conducted at the Longview Sewage Treatment Plant (STP) on February 27-28, 1979. In attendance were Eric Egbers (DOE Water and Wastewater Monitoring Section), Douglas Houck and Gerald Calkins (DOE Southwest Regional Office), and Richard Williams (Longview STP Operator). Composite and grab samples were collected and transported to DOE laboratory in Tumwater for analysis. A follow-up visit occurred on March 21, 1979. Grab composite samples were split and analyzed as before.

The Longview wastewater treatment facility consists of two faculative ponds operated in parallel. Influent flow enters the headworks, through a comminutor, and proceeds to a 9-inch Parshall flume. It then is split and distributed to the two ponds via two pipes run in parallel above the surface of the ponds. One pipe discharges near shore while the other toward the center of the pond. Pond effluents are combined and flow to a covered clarifier where aluminum sulfate (alum) is administered. The flow leaves the clarifier and flows through another 9-inch Parshall flume, is split, and proceeds to two chlorine contact chambers run in parallel. The two flows are again combined and discharged to Coal Creek Slough, surface water segment 12-25-03. The five-year water quality strategy identifies this segment as presently meeting the state and federal water quality goal.

Findings and Conclusions:

At the time of this inspection, the treatment facility's effluent was not in compliance with its NPDES permit monthly average limitation for:

- 85% reduction of BOD_{5} or TSS;
- pounds per day of BOD, or TSS discharged; and 2.
- 3. total plant flow discharged.

Memo to Douglas Houck Longview STP Class II Inspection May 2, 1979 Page Two

As a means of settling out the high concentration of algae present in the effluent, a clarifier was built and alum addition was recommended. At the time of this survey, the clarifier was not in operation because it had settled considerably since construction. Alum addition had ceased because of the inoperable clarifier and a corroding feed system. Both problems contribute to the facility's failure to comply with its NPDES permit limitations for 85% reduction and pounds per day discharged of BOD_{ς} and TSS. These problems must be remedied as soon as possible.

Infiltration and inflow (I and I) is a continuing problem with this treatment facility. Studies have been conducted and recommendations made, but the problem has yet to be remedied. Recorded influent flow is equivalent to a contributing population of seven times that which is actually served. The collection system, leading to this facility, must be immediately repaired. The facility's failure to comply with its NPDES permit limitation for total effluent flow can be attributed to the I and I.

The accuracy of the two Parshall flumes and recording devices is within the allowed 15% of calculated flow. The only discrepancy found was the throat walls not being square. This problem is often caused by the concrete behind the fibreglass walls of the flume which bows the walls slightly. This problem is minor, but important enough to be mentioned. The presence of a Parshall flume and flow recording device on both the influent and effluent makes it possible to monitor the "loss" due to leakage and evaporation. At the time of this survey, the flow lost through the ponds was approximately one-quarter of the influent flow. This was the difference recorded by the influent and effluent flow measuring devices.

Sampling procedures and locations were adequate, with the exception of final effluent dissolved oxygen collection. Mr. Williams was collecting the sample from the chlorine contact chamber outfall and employing the azide modification Winkler technique for analysis. It was explained that chlorine is an oxidizing agent and will oxidize a portion of the sodium thiosulfate used, thus yielding a higher dissolved oxygen result than that which really exists. It was recommended that he collect his sample from the effluent prior to chlorination. Also it was recommended that automatic composite samplers be purchased to eliminate the biased "8 to 4" hourly grab composite and yield a more representative total sample.

Hammer, M. J., 1975. Water and Wastewater Technology, John Wiley and Sons, Inc., 298 pp.

Memo to Douglas Houck Longview STP Class II Inspection May 2, 1979 Page Three

The 24-hour composite samples were split with Mr. Williams to compare results of BOD₅ and total suspended solids analysis with that of the DOE laboratory. The results (Table 1) did not compare very well and it was concluded that a follow-up visit to the treatment plant was warranted. The facility's 8-hour grab composite was split and analyzed as before, but DOE personnel were present when Mr. Williams performed his set-up procedure. The results of analysis comparison (Table 2) were quite good. For a review of the laboratory procedures, refer to "A Review of Laboratory Procedures and Techniques" found elsewhere in this report.

One other feature of the facility warrants mentioning. Each chlorine contact chamber measures approximately 50 feet by 10 feet, yielding a length-to-width ratio of 5 to 1. The optimum length-to-width ratio of greater than 40 to 1 will provide a distribution of contact chamber residence times approaching plug flow.²

In summary, the following are recommended:

- 1. Repair settling clarifier and replace any corroded hardware associated with the alum feed.
- 2. I and I problem remedied as soon as possible.
- 3. Purchase automatic composite samplers.

In conjunction with the regional follow-up inspection (mid-June 1979), the following recommendations should be reviewed with the operator, noting those which have been implemented:

- 1. Plans for clarifier repair and alum addition.
- 2. Measuring final effluent dissolved oxygen prior to chlorination.

Water Pollution Control Federation, 1977. Wastewater Treatment Plant Design, Manual of Practice #8, 394 pp.

Memo to Douglas Houck Longview STP Class II Inspection May 2, 1979 Page Four

Review of Laboratory Procedures and Techniques:

All required laboratory analyses are performed at the Longview STP excluding fecal coliform, which is analyzed by Cowlitz County Health Department.

BOD_5

- The Winkler Azide Modification Method is used for the determination of dissolved oxygen. It is recommended that Mr. Williams prepare all reagents according to either "Standard Methods" or "Laboratory Test Procedure for BOD, DOE 1977".
- 2. The laboratory pH meter should be calibrated with at least two different buffers before use on wastewater samples.
- 3. Recommend placing the internal incubator thermometer in a water bath at the same height the samples are kept.
- 4. The carboy used for distilled water storage should be either placed in the dark or painted black to discourage algae growth.

TSS

- 1. Gooch Crucible Method employed using Whatman GF/A 2.1 cm filter. Mr. Williams expressed a desire to switch to the filter funnel method, enabling him to filter more sample through at one time. Whether or not he goes to the latter method, I suggested he switch to the approved Reeve Angel 934AH or Gelman Type A/E filter paper.
- 2. Recommend a sample volume of at least 50 ml on the influent and 100 ml on the effluent.

EE:cp

Class II Field Review and Sample Collection 24 Hour Composite Sampler Installations

Ç 2 mz	al on	Data and	Time Tuetall				
Sam	oler	Date and	Time Installe	2 a	Location		
1.	Influent aliquot -	250 m1/30	2/27/79 @ 1 ⁻) min.	130 Head	dworks prior	to Parshall	Flume
2.		nated Eff. 250 ml/30	2/27/79 @ 1 ⁻) min.			cture prior tact chamber	
3.		ced Eff]. 250 mg/30	2/27/79 @ 17) min.		nole prior t oal Creek Sl	o discharge ough	into
	Grab S	amples					
	Date and	Time	Analysi	S	Samp1	e Location	
1. 2. 3.	2/27/79 @ 2/28/79 @	1105		ual Chlorine ual Chlorine	Coal Cre	ior to disch ek Slough	arge into
3. 4. 5. 6.	2/28/79 @ 2/28/79 @ 2/28/79 @	1200	Fecal Colifor Total Residu Fecal Colifor	ual Chlorine	H H	п	11 11
	Flow M	easuring D	evice				
1. 2.		hall Flume	on influent ch throat wic	and effluent	prior to c	ontact chamb	ers
_,		standard c			see text)		
			<u>/</u>	_/ No Ex	plain:		
	b. Accura Actu	cy check al Instan.	Flow	Recorder Rea	ding	Recorder Acc (% of inst.	
	l. Infl	uent 2.39	mad	2.75 mgd		87%	110W)
		uent 1.72		1.75 mgd		93%	
	<u>/X/</u>	is with	in accepted 1	5% error lim	nitations		
	//	is in n	eed of calibr	ation			
<u>Fiel</u>	d Data						
Parameter Temperature pH Conductivity		2/27 2/27 2/28 2/28 2/28 2/27 2/27 2/27	and Time /79 @ 1320 /79 @ 1320 /79 @ 1320 /79 @ 1140 /79 @ 1140 /79 @ 1240 /79 @ 1240 /79 @ 1240 /79 @ 1050 /79 @ 1050 /79 @ 1050	Infl Infl Infl Infl Infl Chlo Chlo Chlo Chlo	Location uent uent uent uent uent uent rinated Eff rinated Eff rinated Eff rinated Eff rinated Eff rinated Eff	. 7.0 . 283 . 8.3 . 6.9	

Table 1 Original visit to Longview STP February 27-28, 1979
The following table is a comparison of laboratory results from 24 hour composite(s) together with NPDES permit effluent limitations. Additional results pertinent to this inspection have also been included.

	DOE Results			Longview	NPDES		
	Influent Effluent		Chlor. Eff.	Influent	Unchlor. Effluent.	(Month1 averag	
BOD ₅ mg/l lbs/day	57 863	18 273	12 ¹ 182	114 1727	38 576	30 179	
TSS mg/l lbs/day	67 1015	39 591	30 ² 454	190 2878	20 303	30 179	
Total Plant Flow MGD			1.816			<0.715	
Fecal Coliform (col/100 ml)			< 10			200	
Total Chlorine Residual (ppm)			1.5				
рН	6.9	7.2	7.2			6.0-9.0	
Conductivity (¿mhos/cm)	273	297	293				
Turbidity (mg/l)	50	20	20				
COD (mg/1)	120	92	84				
NO ₃ -N (mg/l)	.6	<.1	<.1				
NO ₂ -N (mg/l)	<.1	.2	<.1				
NH ₃ -N (mg/l)	5.4	7.8	8.0				
υ-PO ₄ -P (mg/1)	1.6	2.4	2.2				
T-PO ₄ -P (mg/1)	5.5	3.6	3.5				
Total Solids	261	219	224				
T. Non Vol. Solids	151	135	134				
T.S. Non Vol. Solids	26	12	10				
			ł		i [i	

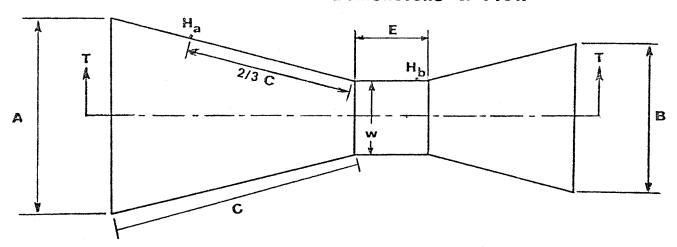
^{*} Field Analysis

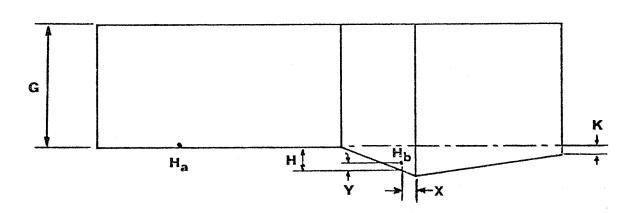
^{1&}lt;sub>79%</sub> Removal

²55% Removal

		DOE		Longview	STP	MPDES (Monthly
,	Influent	Unchlor. Effluent	Percent Removal	Influent	Unchlor. Effluent	Average
BOD ₅ (mg/l) lbs/day	100 1334	20 267	80	109 1455	23 307	30 179
TSS (mg/l) lbs/day	140 1868	40 534	71.4	120 1601	60 801	30 179
Flow (MGD)					1.6	
COD (mg/d)	230	110				
Total Solids (mg/l)	370	236				
T. Non Vol. Solids (mg/l)	195	147				
T. Sus. Non Vol. Solids (mg/l)	28	4		tra - december y a son at a minimum per		
			·	e delenation of common of the		And a state of the
				- data de versa de dapoi grant		

^{*} Field Analysis


[&]quot;<" is "less than" and ">" is "greater than"


PARSHALL FLUME:

Dimensions & Flow

(Effluent)

Throat walls seem to be the only walls not true. Others seem to

			1								
Code	Spec	's	Measu	red	Time	Ha	Нь	Theoretical	Flow	Recorded	Flow /
A	Ī	Е	I	E	E 1310	11"		1.72*		1.75 MGD	98%
	225/8 15''		22½'' 15''	22½'' 15"	I 1335	13½	17	2.39		2.75 MGD	87%
	345/8 231/8		35'' 23''	35" 23"							
E G	12'' 24''		12"	12"							
H K	24		29½''	29½"							
w x	9''	9''	93/8"	93/8''				21.0			(Efflue
Y						1		912"			walls sonly was others

*Assuming 9" throat width